Quantcast
Channel: Helmholtz Blogs
Viewing all articles
Browse latest Browse all 891

Bremsen sich Windparks gegenseitig aus?

$
0
0

Pressemitteilung hereon.de

Immer mehr Länder treiben den Ausbau von Windparks auf dem Meer voran. Werden diese Offshore-Windparks aber zu dicht nebeneinander errichtet, nehmen sie sich gegenseitig den Wind und damit die Stromausbeute weg. Dass die Verluste erheblich sein können, zeigt eine Studie des Helmholtz-Zentrums Hereon, die jetzt im Fachjournal Nature Scientific Reports erschienen ist.

Der Ausbau der Windenergie in der Deutschen Bucht und der Ostsee hat sich in den vergangenen Jahren enorm beschleunigt. Doch der Platz ist begrenzt. Deswegen werden Windparks zum Teil recht dicht nebeneinander gebaut. Ein Team um Dr. Naveed Akhtar vom Helmholtz-Zentrum Hereon hat herausgefunden, dass sich benachbarte Windparks dadurch mitunter gegenseitig ausbremsen. Strömt Wind durch einen großen Offshore-Park, verlangsamt sich die Luft-Strömung. Wie die Forscherinnen und Forscher jetzt im Fachmagazin Nature Scientific Reports schreiben, wirkt sich diese Bremswirkung erstaunlich großräumig aus. Im Durchschnitt reicht sie 35 bis 40 Kilometer weit – bei bestimmten Wetterlagen sogar bis zu 100 Kilometer. Die Leistung eines benachbarten Windparks kann sich damit um 20 bis 25 Prozent verringern, was letztlich zu wirtschaftlichen Verlusten führt. Werden Windparks dicht nebeneinander geplant, sollte man diese Bremswirkung künftig berücksichtigen. (Quelle: PM Hereon)

==> zur vollständigen Pressemitteilung des Helmholtz-Zentrums Hereon

 

Akhtar, N., Geyer, B., Rockel, B., Sommer, P.S., & Schrum, C. (2021): Accelerating deployment of offshore wind energy alter wind climate and reduce future power generation potentials. Sci Rep 11, 11826, doi:10.1038/s41598-021-91283-3

Abstract:

The European Union has set ambitious CO2 reduction targets, stimulating renewable energy production and accelerating deployment of offshore wind energy in northern European waters, mainly the North Sea. With increasing size and clustering, offshore wind farms (OWFs) wake effects, which alter wind conditions and decrease the power generation efficiency of wind farms downwind become more important. We use a high-resolution regional climate model with implemented wind farm parameterizations to explore offshore wind energy production limits in the North Sea. We simulate near future wind farm scenarios considering existing and planned OWFs in the North Sea and assess power generation losses and wind variations due to wind farm wake. The annual mean wind speed deficit within a wind farm can reach 2–2.5 ms−1 depending on the wind farm geometry. The mean deficit, which decreases with distance, can extend 35–40 km downwind during prevailing southwesterly winds. Wind speed deficits are highest during spring (mainly March–April) and lowest during November–December. The large-size of wind farms and their proximity affect not only the performance of its downwind turbines but also that of neighboring downwind farms, reducing the capacity factor by 20% or more, which increases energy production costs and economic losses. We conclude that wind energy can be a limited resource in the North Sea. The limits and potentials for optimization need to be considered in climate mitigation strategies and cross-national optimization of offshore energy production plans are inevitable.


Viewing all articles
Browse latest Browse all 891